

Wear Applications & Management Services

WEar BAck Transfer Systems

The design objectives of the WEarBAck transfer include:

- Controlling the direction and speed of product flow
 - Central discharge loading on receiving conveyor
 - Loading in direction of conveyor travel
 - Retardation or control of flow
 - matching material speed to receiving conveyor speed
- Control of stream shape
- Control of spillage
- Control of dust
- Reduction of product degradation
 - Minimising material on material wear and material on chute wear
- Provision of surge control
- Long intervals between maintenance periods
- Easy access for inspections and maintenance

UUU 🛛 🔪 🗇 vailability Innovation 🕅 aintainability

WEar BAck Transfer Systems

The WEarBAck design controls flow direction, speed, stream shape and spillage by:

- Obtaining control of the material flow from the initial impact
- Maintaining contact with the chute surface where possible to maintain a constant velocity (boundary layer effect)
- Using incremental and subtle directional changes
- Using a horseshoe/V cross sectional shape to concentrate the ore stream into a single continuous flow
- Using a horseshoe/V cross sectional shape and ledge system to create a virtual tube for manipulating ore flow (just like the water in a water slide)
- Using the appropriate chute elevation angle to match the velocity of the ore to the speed of the receiving conveyor to eliminate boiling at impact
- Using a wedge shape discharge to:
 - Allow smaller material to load on to the receiving conveyor first
 - Centralise ore flow
 - Provide an upward taper to prevent ore entrapment between chute and belt

A Availability Innovation Invaintainability

Wear Applications & Management Services

Page 3

Wear Applications & Management Services

WEar BAck Transfer Systems

- The WEarBAck design controls dust, capacity surges and reduces product degradation by:
 - Keeping the ore in contact with the chute surface as much as possible
 - Concentrating the ore stream
 - Keeping impact angles as small as practical
 - Keeping the velocity of the ore as constant as possible
 - Matching the direction and velocity of the ore to the speed of the receiving conveyor
 - Using the ore to create a face to absorb the initial impact
 - Providing enough volumetric capacity in the transfer to cope with conveyor over runs and ore surges together with:
 - A wedge shape discharge for ease of chute clearance during plant restarts

TILL Availability Innovation Maintainability

- The WEarBAck design provides long intervals between maintenance periods and easy access for inspections and maintenance by:
 - Using a ledge system to trap ore thus creating a material on material face that protects the chute wall
 - Using removable panels on chute sections where practical to provide uninterupted access for maintenance
 - Providing "soft" loading to the receiving conveyor thus reducing belt and idler maintenance
 - Installing inspection doors in as many areas as practical for visual periodic maintenance.
 - Using light weight and relatively inexpensive ledges in lieu of large difficult to handle iron or steel lining systems

TILL Availability Innovation Maintainability

Page 5

Wear Applications & Management Services

WEar BAck Transfer Systems

- Current Installations
 - BHP Billiton Mount Newman Operation x 2
 - Newcrest Mining Ridgeway Operation
 - Newcrest Mining Telfer Operation
- Scheduled Installations
 - Newcrest Mining Ridgeway Operation, November 07, February 08
 - Newcrest Mining Cadia Operation, November 07, February 07
 - Newcrest Mining Telfer Operation, Late 07

TILL Availability Innovation Maintainability

