Air-viscosity / Reynolds-number

 τ = material-constant * velocity-gradient

 η = viscosity : dimension : N/m² * m/m/(sec) = Ns/m²

 $v = \eta/rho(air) = dynamic viscosity :$ dimension : Ns/m^2/(kg/m^3) = Nsm/kg

Under the circumstances where the gas behaves as an ideal gas, η can be considered as independent of the pressure.

In pneumatic conveying, the pressures are so low that this is permissible.

The dependency of temperature is given by :

$\eta = \eta_0 * \sqrt{(T/T_0 * (1-c/T_0)/(1+c/T))}$	
for air :	for nitrogen :
$\eta_0 = 1.72 * 10^{-5} \text{ Ns/m}^2$	$\eta_0 = 1.67 * 10^{-5} \text{ Ns/m}^2$
$T_0 = 273 \ ^{\circ}K$	$T_0 = 273 \ ^{o}K$
c = 113	c = 100.8

i.e. : air at 20 °C $\eta = 1.8 \ 10^{-5} \ \text{Ns/m^2}$

Derivation of Reynolds-number

Method :	prototype-/model comparison p = prototype m = model
$L_p = c_1 * L_m$	(length)
$v_p = c_v * v_m$	(velocity)
$\rho_p = c_\rho * \rho_m$	(density)
$\eta_p = c_\eta * \eta_m$	(viscosity)
$g_p = c_g * g_m$	(gravitational acceleration)
$\zeta_p = c_\zeta * \zeta_m$	(resistance due to roughness)

Resistance of prototype :	Resistance of
----------------------------------	---------------

$$W_p = \eta_p * dv_p/dy_p * A_p \qquad \qquad W_m = \eta_m * dv_m/dy_m * A_m$$

model:

Substituted :

$$Wp = c_{\eta} * c_{v}/c_{1} * c_{1}^{2} * \eta_{m} * dv_{m}/dy_{m} * A_{m}$$

$$Wp = c_{\eta} * c_{v} * c_{l} * W_{m}$$

Also :

 $W_p = 1/2 * \zeta_p * \rho_p * v_p^2 * A_p \qquad \qquad W_m = 1/2 * \zeta_m * \rho_m * v_m^2 * A_m$

Substituted :

$$Wp = c_{\zeta} * c_{\rho} * c_{v}^{2} * c_{l}^{2} * W_{m}$$

Result in :

 $c_{\eta} * c_{v} * c_{l} = c_{\zeta} * c_{\rho} * c_{v}^{2} * c_{l}^{2}$

For c_{ζ} = 1 (Equal roughness for prototype and model)

$$(c_{\rho} * c_{v} * c_{1})/c_{\eta} = 1$$

$$\rho_p / \rho_m * v_p / v_m * L_p / L_m * \eta_m / \eta_p = 1$$

or :

is equal for model and prototype $% \left({{{\mathbf{r}}_{\mathbf{r}}}_{\mathbf{r}}} \right)$, the scaling-factors are applicable for both situations.

This ,because the flows are comparable regarding friction-forces.

$$\begin{array}{l} \rho * v * L \\ \text{Reynoldsnumber}: \quad \mathbf{Re} = ------ \\ \eta \end{array}$$

or :

in which :

$$v = \eta/\rho$$