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sampling Procedures 
far Bulk Solids 

Summary 

Judging the state of bulk materials from observations, 
necessitates the use of statistical sampling procedures. In 
this paper we employ a certain stochastic model to deter
mine the portion of material which must be included in a 
sample. A numerical example is calculated in detail. 

1. Introduction 

The content of a particular characteristic in raw material, 
e.g., the content of metal in iron ore, the content of sulphur in 
lime, or the content of ashes in coal, cannot be assumed to 
be constant but exhibits naturaJly some kind of variability. 
Therefore the amount of the characteristic of interest (with 
respect to a fixed unit of measurement) is usually interpreted 
as a random variable, which can be characterized sufficient
ly precisely for practical purposes by its expected value µ 
and variance er. 

These, usually unknown values must be estimated by obser
vations. In the case of bulk solids one sees that only a very 
small proportion of the material can be examined with re
spect to the characteristic. Therefore it is inevitable to 
employ sampling procedures to conclude the state of all of 
the material from the observations. 
Since every mined raw material has to be transported at 
some time the bulk, which has to be judged can be imagined 
as a stream (e.g., a moving belt conveyor with a constant 
load or a sequence of containers) the properties of which 
change in time. In using sampling procedures the following 
questions arise: 
(i) How much materiaf has to be taken in each sample? 
(ii) At what distances should the samples be taken? 
(iii) How must the sampled material be processed further 

{technically and statistically)? 

Usually two conflicting points of view occur. With costs in 
mind, as few samples as possible should be taken, on the 
other hand, a high statistical accuracy can only be achieved 
with many samples. Often a compromise is found by pres
cribing the statistical accuracy and then deciding whether 
the number of samples required and the expense of their pro
cessing is economically j1ustifiable. 
Given this, we proceed as follows, in the course of which we 
answer the first question asked above. To be more precise: 
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Having a rough knowledge of µ and er from the past we 
determine the size of each sample to be taken from the 
material in flow. This size must be chosen large enough to re
duce the short-duration, irreg.ular variation of the considered 
characteristic to a prescribed degree. 

2. The Stochastic Model 

Our aim now is to determine the content of some contam
inating substance in a flow of raw material, e.g., sulphur in 
limestone. 
This content (expressed as percentage of weight) is inter
preted as a random variable with expectation µ. and variance 
a2 where the last quantity depends on the amount of re
ference material. This means that, for example, 100 g
samples exhibit a much higher variability in the amount of 
the considered characteristic present, than samples of 
100 kg mass which form the mean of 1,000 small portions. 
To describe the inhomogeneity of the raw material in a 
model and to make conclusions concerning the size of a 
single sample we assume the following: 
{i) The content of the contaminating substance can be inter

preted for a certain amount of reference material B 

(say 100 kg :S B :S 1,000 kg) as random variable Yt with 
fixed expectation µ. and fixed variance a2. 

(ii) The sequence of these random variables in the material 
flow forms a weak stationary stochastic process. 

The values of µ. and u2 characterize the stochastic behaviour 
of an amount 8 of reference material but in no way describe 
the state of smaller portions of material, say laboratory 
samples of only a few grams weight. Under the (worst case) 
assumption that in such small samples the proportion of 
contaminating substance may vary between O % and 100 % 
the following model seems to be adequate. 
The content, Xt, of the contaminating substance related to 
1 g mass of material drawn in a sample at time t forms a 
random variable with 

(1) 

where 2t is a multiplicative random disturbance, which is 
stochastically independent of Yt and Z7 tor , * t. Its expecta
tion is assumed to be f2t = 1 and its variability is "much 
higher" than a2 i.e., Var 2t = uf ► er. Note that f2t = 1 
implies £Xi = E (Yt · 2t) = EYt · EYt = µ,. 
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Under these assumptions as a first step an upper boundary 
for al can be calculated: 
A good approximation to the support of the probability 
distribution of 2t may be assumed to be the interval 

[0, 100 ]. (2t = 0 yields material without any contaminations, µ 
7. 

100 . I . t· I f . . � = -- matena consIs mg on y o contaminating µ 
substance). 
To deduce an upper boundary for al, 2t is replaced by an 

- - - 100 extreme variable 2t with P (2t = 0) = p, P (2t = -) = 1- p, µ 
0 < p < 1, where P (E) denotes the probability of the event E. 

The condition E2t = 1 then gives p = 1 - _µ_ and it 
100 

fol lows that 

VarZ. = (1-1�)-1 + ( 1 -
1
: )'. 1� = 

1
� -1 (2) 

By construction, Var 2t $ Var Zt holds. A rough idea of the 
value of µ then results in an upper boundary of 4 Let, for 
example, µ = 0.02 (i.e., B kg of material contain an average of 
0.02 % of contaminating material), then it follows that 

Var 7. $ 
100 - 1  = 5000. (3) 

� 0.02 

3. Derivation of Results 

Drawing a sample means to take a cluster of N consecutive 
1-g-portions out of the material stream. The correlations of 
the constituent Yt, Y5 of (1) are nearly 1, i.e., 

The content of the contaminating substance in the sample 
then can be described by the random variable 

1 N 
l: Xt. N t=1 

Our aim now is to determine the number N such that the 
short duration irregular disturbances 2t cause a negligible 
effect on the variability of the characteristic in the sample. 
To do so we proceed by 

Var� (4) 

= (a2 + µ2) (af + 1) -µ2 

= a2 (ai + 1) + µ2 ai. 

(5) 

(4) and (5) yield the variance of the contaminating substance 
in the sample 

Var ( N
1 

E xt) = .,..
1
12 
( E Var Xt + l: Cov (Xt, X5)) t=1 JV" t=1 t<S 
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- 2 ( 1 ifi (a2 + µ2) ) - a + ---'---- . 
N a2 
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The assumption that the short duration disturbance 2t may 
result in an increase in variance of at most a• 100 % (a > 0) 
leads to the following inequality 

af (a2 + µ2) 
$ a or equivalently 

N a2 

N � a� (1 + µ2 ) . 
a a2 

For the above example with µ = 0.02 and variance a2 
= 

5 • 10-5 together with the upper boundary of af in (3) this 
results in 

N � 5 · 104 ( 1 + 
4 . 1Q-4 ) = 45 · 104 g . 
5 · 10-s 

This means that each sample has to consist of at least 
450 kg of material. 
For other values ofµ and a2 the results can be obtained in an 
analogous way. 

4. Remarks 

Questions (ii) and (iii) of Section 1 can be answered by stand
ard procedures of statistical quality control (see [1], [3], [4]). 
The derivation of a subsampling procedure with minimum 
costs and prescribed accuracy will be treated in a forthcom
ing paper [2]. 
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