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Determination of Sample Size for Estimation 
of the Mean Grade 

Tuncel M. Vegulalp, USA 

Die Bestimmung der Probengro6e fi.ir die Abschatzung der mittleren Gi.ite 

Detemi'nation du calibre d'un echantillon pour estimer la qualite moyenne 

Detenninaci6n del tamano de muestras para la estimacion del grado medio 

Summary 

Practical guidelines for the accurate assessment of the re­
quisite sample size for the estimation of the mean grade of a 
quantity or volume of mineralised bulk material are presen­
ted, and an illustrative numerical example is given. 

1. Introduction 

In mineral processing sampling of bulk material plays an ex­
ceptionally important role. It provides the necessary esti­
mates of the material properties before and after processing. 
Statistical theory dealing with the properties of the arith• 
metic mean of a sample as an estimator of the unknown 
population mean is well developed especially for normally 
distributed random variables. In the following we shall dis� 
cuss some elementary statistical relationships and their use 
in determining the minimum required sample size in sam­
pling of bulk materials with detailed numerical examples. 

2. Sampling 

The act of sampling aimed to determine one or more proper­
ties of a certain material of a certain volume consists of: 
a) selection of a relatively small portion of this volume and 
b) determination of its properties by means of physical 
and/or chemical testing. Since the results of these tests are 
going to be used in estimating the properties of the whole 
volume, it is desirable to have procedures which will produce 
estimates with acceptably small errors with acceptable 
costs. 
The selection process produces a sample which may consist 
of one or more number of specimens that are tested or 
assayed. In the mineral industries the word sample is used 
to designate one such specimen. In the widely accepted 
terminology of mathematical statistics the word sample 

means a collection of one or more observations {assays test 
results etc.) of the attribute in question. In the following to 
be consistent with the terminology of mathematical 
statistics we shall refer to a single member of a sample as a 
specimen and a collection of specimens as a sample. 
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3. Sources of Variation in Sampling 

If the sampled material is perfectly homogeneous with 
respect to its properties in question, any fraction of the bulk 
would be exactly the same as far as those properties are 
concerned. For example if a certain bulk material is hetero­
geneous in its chemical composition but homogeneous in its 
density it would be considered homogeneous if it was being 
sampled to determine its density. The test results of different 
specimens may show some variation even if the material is 
homogeneous. This type of variation is attributable to the 
testing or assaying procedures and their repeatability. If the 
material is heterogeneous, it is expected that the specimens 
will differ in their measured properties. This is common 
occurrence in sampling crushed or ground bulk of ore and 
ore concentrates in mineral processing. The source of this 
variation, in addition to the variation caused by the assaying 
process, can be attributed to two main causes [2, 3] when we 
deal with particulate material: 
1. The smaller fragments of the particulate material are 

themselves heterogeneous. This occurs especially when 
sampling crushed ores where the particle size is larger 
than the liberation size of the minerals in the composition 
of the ore. 

2. Segregation of certain types of fragments due to handling 
of the bulk material. This source of variation can be over­
come by blending the particulate material. Blending, how­
ever, does not eliminate the heterogeneity of individual 
particles [2 3]. 

The statistical theory of sampling considers a sample of size 
N (N specimens) selected randomly and independently. A 
random selection process must be such that every member 
of the population being sampled would have the same 
chance to be selected. The independency of specimens 
implies that the selection of one specimen does not 
influence the selection of another member in the lot. These 
requirements are not (in spite of all efforts) usually met 
ideally in practice either due to the two major sources of 
variation discussed above or due to the nature of the 
physical sampling technique or both. For example, a 
perlectly mixed batch of ore may become segregated during 
the sampling process due to the nature of mechanical 
handling system. 
The act of sampling can be considered as a process which 
allows one to observe the realizations of a random variable 
whose statistical properties are determined by the inherent 
characteristics of the sampled population and the sampling 
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and measurement process. Naturally, the apparent 
variability of the assay values can be greatly influenced by 
the sampling and assaying processes. In statistics a random 
variable is defined as a function which assigns real numbers 
to the outcomes of a random experiment. In our case the 
random experiment consists of: a) selection of a fraction of a 
given volume of bulk by giving equal chance to all other 
fractions in the lot, b) further reduction of its volume and 
selection of a fraction of the specimen volume for testing, 
and c) testing or assaying the final fraction for its physical 
and/or chemical properties. The random variable being ob­
served here is defined by the sampling process. A change in 
the volume of the specimen in the sampling process will 
correspond to a different experiment, thus will result in the 
realization of a different random variable. When sampling 
from a well mixed bulk of particulate material it can be 
postulated that the random variables observed by choosing 
different specimen volumes would possess the same 
distribution function and the same mean but different 
variances. The theoretical and experimental studies indicate 
that, other things being constant, reduction of specimen 
volume increases the variance. A practical relationship has 
been proposed by G y [2, 3, 4] which is useful in determining 
the minimum acceptable specimen weight as a function of 
the diameter of the coarsest fragment in the bulk. This 
relationship is expressed as: 

Where: 

Cd3 

a2 

a2 variance of the tolerated sampling error 

(1) 

c a constant characterizing the material to be sampled 
d diameter of the coarsest fragment 
M

5 
weight of the specimen. 

4. Determination of Minimum Sample Size 

The arithmetic average of random independent observations 
of a Normally distributed random variable is known to be the 
best estimator of the unknown population mean. The Central 
Limit Theorem [1] asserts that the arithmetic average of 
random independent observations of a random variable will 
be distributed Normally when the sample size is infinitely 
large. It has been shown in the literature [6, 7] that even for 
moderate sample sizes the statistical behaviour of the 
sample average is acceptably close to that of the Normal 
distribution. It is also known that by increasing the number 
of specimens (sample size) one obtains sample averages 
closer to the unknown value of the population mean. The 
Law of Large Numbers [5] asserts that when the sample size 
is infinitely large, the sample mean becomes equal to the 
population mean. In practice, however, we deal with small 
sample sizes for obvious economic reasons, and we do not 
expect our sample average to become equal to the unknown 
population mean. What is customary then is to establish an 
interval around the sample average which will contain the 
unknown mean with a certain predetermined probability. 
Such an interval is called "confidence interval" in statistics. 
Given the probability (1-a), the length of the confidence 
interval becomes a function of the population variance and 
the sample size. This relationship is derived from the 
following probability statement: 

Prob. [ X-Z 1-cx/2al{Fi :5:µ:5: X + Z1-cx12ali/N] = 1-a 
(2) 
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Where: 
-

X sample arithmetic average 
a population standard deviation 

µ population mean 
N sample size. 
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Z 1_,Y,2: 1-a/2 percentile of standard Normal variable, i.e., 

z1-cx/2 
_ £ f(x) dx = 1-a/2 

The length L of the confidence interval is: 

(3) 

It is clear from this expression that the length of the confi­
dence interval is linearly proportional to the population 
standard deviation, and inversely related to the square root 
of the sample size. If a was known, this expression could be 
used to determine the minimum sample size needed to 
obtain a confidence interval which will contain the unknown 
meanµ with 1-a probability. The expression for the mini­
mum sample size is: 

(4) 

For example, if we wish to estimate the average grade of a 
batch of ore concentrate such that the true average grade is 
contained within an interval of 1 % metal, with 90 % probabi­
lity (1-a = 0.90), and if the population standard deviation 
was known to be also 1 % metal, we then proceed by finding 
1- a/2 = 0.95 percentile of standard normal variable from 
the tables of standard normal integral (Z

0_95 = 1.96) and by 
the use of above relationship find that the smallest sample 
size is 16. If the population standard deviation was 2 % 
metal, the minimum sample size would be 62. If we wished to 
estimate the mean with more precision, say L = 0.5 % 
metal, we would need at least N = 62 observations for 
a = 1 % and N = 256 observations for a = 2 %. 
Since a is usually not known by the sampler, and the sam­
pling process is in fact also directed towards estimating the 
population standard deviation as well as the mean, the 
above discussion has a very limited practical consequence. 
It shows, however, an important relationship between the 
sample size, the inherent variability of the sampled popula­
tion and the precision at which the mean µ is to be esti­
mated. This precision is increased by reducing L and/or in­
creasing 1-a, both resulting in larger sample sizes. Similar­
ly, the variability represented by a will increase the sample 

. size quadratically. Given the sampling method, the specimen 
volume, and the bulk to be sampled, a is an unknown const­
ant. Reduction of a is only possible by employing a different 
sampling method, further crushing or grinding the bulk to be 
sampled, or increasing the specimen volume. All of these 
changes will introduce a new random variable with the same 
mean but smaller variances. 

As we noted above, the population standard deviation a is 
usually not known by the sampler. The variance is estimated 
from the sample by the following well known formula: 
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Where: 
S2 estimator for o2 

X sample arithmetic average 
xi assay values 

sample size. 

Considering the fact that the variance is not known but 
estimated by 52

, the following probability statement can be 
made: 

Prob. 
[ X-t1-a/2.,N-1SIF �µ� - + t1-a/2., - s,1-] = 1-a 

(6) 

Where: 
X sample arithmetic average 
S sample standard deviation 

sample size 
µ. population mean 
t1 _0,2., N-1 1 -a/2 percentile of the Student's t distribution 

with -1 degrees of freedom. 

The length of the confidence interval can be expressed by: 

L = 2 t 1-an. -1 I l � (7) 

From equation (7) we obtain the relationship for minimum 
sample size as: 

� 4tf_a/2. -1 
2/l2 (8) 

A careful examination of the equations (5) and (8) will show 
that the values of S and t are not independent of . Further­
more one needs a sample of a certain size, say ', to obtain 
S initially. This value will change as new specimens are sam­
pled, assayed and their values used in recalculating S. This 
difficulty suggests that when the population variance is 
unknown it is not possible to determine the minimum 
sample size by exact means. A practical solution to this 
problem can be obtained by sequentially sampling and 
calculating successive approximations of . To accomplish 
this, one starts with a small sample size and estimates the 
standard deviation by means of equation (5). Using the 
appropriate values of t1 _ 0

,2., _ 1, S and Lone obtains a ne 
value for . If this value is larger than the present sample 
size, additional sampling is done and the procedure is re­
peated. As the sample size increases the value of will ap­
proach the unknown population standard deviation with 
decreasing error. However, since 2 is a function of random 
independent observations x, (i = 1, . . .  , , , it is also a random 
variable whose mean is equal to the unknown population 
variance; and thus the successive values of 52

, as sample 
size increases do not approach the population variance o 2 

from one direction monotonically. They may fluctuate 
around o 2 with decreasing error. The consequence of these 
random fluctuations is that the calculated values of ' will 
also fluctuate. It is, therefore not advisable to increase the 
sample size to that of the newly calculated value of I espe­
cial ly when the number of observations is small and the cost 
of sampling is to be minimized. The ideal procedure is to in­
crease the sample size by smallest possible increments and 
continually calculate until the value of and the actual 
sample size are equal or sufficiently close. 
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The relationship given in (8) suggests certain practical 
means of designing a sample plan by considering the ratio 
U/52

• For example, if one wishes to estimate the population 
mean such that the 95 % confidence interval length is equal 
to a certain multiple of S, then an initial determination of the 
sample size is possible. By rearranging the terms of the rela­
tionship (8) one obtains the relationship: 

LJ � 4tLo/2,N-1 (9) 

Where: U = U/52 

The right hand side of this inequality is determined by certain 
values of a and . The value of the percentiles of the t distri­
bution are available in most of the standard textbooks on 
statistics. Fig. 1 shows the relationship between U and for 
two most commonly used confidence levels. Table 1 lists U 

values for sample sizes from 2 to 500 for confidence levels 
0.90, 0.95, and 0. 99. These can be used directly to determine 
the required minimum sample size for a predetermined value 
to U. For example, if one wishes to estimate the population 
mean using a 95 % confidence interval whose length is equal 
to S one would look for the intersection of the horizontal line 
crossing the U axis at U = 1 with the curve corresponding to 
1-a = 0.95. In this particular case, the minimum sample 
size would be = 18. Similarly from Table 1, one can obtain 
U values corresponding to given sample sizes directly. 
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Table 1 

Sample u = L2l52 

Size 
N 1-a = 0.90 1-a = 0.95 1-a = 0.99 

2 79.63 323.09 8105.19 

3 11.37 24.65 131.21 

4 5.52 10.11 34.11 

5 3.63 6.18 16.93 

6 2.69 4.40 10.83 

7 2.15 3.43 7.87 

8 1.81 2.78 6.13 

9 1.54 2.37 5.02 

10 1.34 2.04 4.23 

11 1.19 1.81 3.65 

12 1.08 1.61 3.22 

13 0.97 1.46 2.88 

14 0.90 1.33 2.59 

15 0.83 1.22 2.37 

16 0.77 1.13 2.18 

17 0.72 1.06 1.89 

18 0.67 0.99 1.77 

19 0.63 0.93 1.66 

20 0.60 0.87 1.64 

21 0.56 0.83 1.54 

22 0.54 0.79 1.46 

23 0.51 0.75 1.38 

24 0.49 0.71 1.32 

25 0.47 0.68 1.25 

26 0.45 0.65 1.20 

27 0.43 0.63 1.14 

28 0.41 0.60 1.10 

29 0.40 0.58 1.05 

30 0.39 0.55 1.02 

40 0.28 0.41 0.73 

50 0.22 0.32 0.57 

60 0.19 0.27 0.47 

80 0.14 0.20 0.35 

100 0.11 0.16 0.28 

200 0.05 0.08 0.14 

500 0.02 0.03 0.05 

5. A Numerical Example 

To illustrate the use of the sequential sampling scheme 
described above we shall consider the following numerical 
example. 
A batch of copper concentrate is to be sampled with the pur­
pose of determining its average copper content, such that 
the true average grade µ. would not deviate from the arith­
metic average of sample assays more than ± 1 % Cu with 
95 % cont idence, i.e., 

Prob. [I X-µ. I ::s 1 % cu]= 0.95. 

Furthermore, the sampler would like to make this assertion 
with as little as possible sampling. 
Given the specimen volume, the assay value corresponding 
to each specimen is an observation of a random variable 
whose mean is the same as the average grade of the whole 
bulk, and the variance is a function of the specimen volume. 
Suppose that in this example the average grade of the con­
liberation size of Cu minerals in the concentrate, the sampler 
decides to take 1 lb specimens by a random selection pro­
cess. The random variable being observed by this selection 
process would have the same mean as the average grade of 
the bulk concentrate. Let the variance associated with the 
selection process be 4 ( a  = 2 % Cu). The sampler without 
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the knowledge of the value of the variance decides to sample 
few specimens and determine their copper content, and 
decide whether to sample more or not on the basis of his 
analysis of the presently available assay data. Table 2 shows 
the successive outcomes of such an experiment. The first 
column indicates the order that specimens are sampled by 
means of random selection. The second column lists the 
assay values corresponding to these specimens. The third 
column lists, cumulatively, the number of specimens sam­
pled up to that point (sample size). The fourth column is the 
arithmetic average of assay values of the specimens up to 
and including the corresponding row. In the fifth column the 
sample standard deviation is listed. The sixth column shows 
the required minimum sample size calculated by using (8) for 
1-a = 0.95, and the last column shows the calculated mini­
mum sample size for 1 -a = 0.90. A close look at Table 2 
shows that the calculated sample size fluctuates widely for 
small sample sizes but later converges towards the actual 
sample size. For 1-a = 0.95 the required sample size 
becomes stable between 18 and 19 after the actual sample 
size reaches 22. If the sampler was using the sequential 
scheme, he would keep sampling until the sample size 
reaches 21, where the calculated minimum sample size be­
comes less than the actual sample size. The same situation 
occurs for 1-a = 0.90 at N = 16. Note that if the population 
standard deviation was known (2 % Cu) the required mini­
mum sample size could have been calculated by using (4). In 
this particular example, N would be 16 for 1-a = 0.95, and 
11 for 1 -a = 0.90. The need for larger sample sizes when 
the variance is also estimated by sampling is the penalty for 
not knowing the true value of the variance. 
Let us now consider the alternate method of determining the 
sample size by means of the ratio U = L2 /S2. For a selection 
of U = 1, the required minimum sample size is 18 for 
1-a = 0.95 and 13 for 1-a = 0.90. In the first case (N = 18) 
the length of the confidence interval is 2.14 % Cu 
(5 = 2.14 % Cu), and in the second case it is 2.31 % Cu 
(S = 2.31 % Cu). If the sampler was not satisfied with this 
result, he would select a smaller value for U and continue to 
sample. For example, if he decides to select U = 0.8, he then 
will have to sample additional 4 and 3 specimens for 95 % 
and 90 % confidence intervals, respectively. In this case he 
will find that the 95 % confidence interval length is 1.71 % Cu 
(0.8 S = L) and the 90 % confidence interval length is 1.81 % 
Cu. 
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Table 2 

Specimen Assay Value Sample 
No. (%Cu) S12e 

1 22.75 1 

2 21.55 2 
3 25.82 3 

4 26.66 4 

5 26.47 5 

6 25.08 6 
7 23.93 7 

8 22.86 8 
9 24.32 9 

10 25.99 10 

11 30.60 11 
12 25.07 12 
13 26.86 13 
14 27.28 14 

15 22.78 15 
16 23.52 16 
17 24.27 17 
18 25.44 18 
19 22.58 19 

20 22.84 20 
21 24.17 21 

22 22.59 22 
23 26.31 23 
24 27.00 24 

25 26.99 25 

26 22.43 26 
27 25.86 27 
28 27.43 28 

29 26.99 29 
30 25.88 30 
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Sample Sample Calculated Sample Size 
Mean S. Deviation for L = 2% Cu 
(%Cu) 5(% Cu) 1-o- = 0.95 1-o- = 0.90 

22.75 

22.15 0.85 117 29 
23.37 2.20 90 42 
24.20 2.44 61 33 
24.65 2.34 43 25 
24.72 2.10 30 18 
24.61 1.94 23 15 
24.39 1.90 21 14 
24.38 1.78 17 11 
24.54 1.75 16 11 
25.09 2.47 31 20 
25.09 236 27 19 
25.23 2.31 26 17 
25.38 228 25 17 
2520 230 25 16 
25.10 2.26 24 15 
25.05 220 22 15 
25.07 214 21 14 
24.94 2.15 21 14 
24.83 2.15 21 14 
24,80 210 20 14 
24.70 2.10 19 13 
24.n 2.08 19 13 
24.86 2.08 18 13 
24.95 208 18 13 
24.85 2.10 19 13 
24.89 2.07 18 13 
24.98 2.09 19 13 
25.05 2.08 19 13 
25.08 2.05 18 13 




