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Statistical Mechanical Considerations
on Storing Bulk Solids
M. Shahinpoor, USA

Statistisch-Mechanische Betrachtungen zur Speicherung von Schüttgütern
Considerations mecaniques statistiques du stokage des solides en vrac

Consideraciones mecänicoestadisticas del almacenamiento de sölidos a granel

Statistisch-Mechanische Betrachtungen zur Speicherung
von Schüttgütern

Ein geometrischer Wahrscheinlichkeitsraum für das zu spei-
chernde Schüttgut wird eingeführt und der Begriff der .Voronoi-
Zellen' wird behandelt. Die klassische statistische Theorie und
Boltzmann's Postulat werden angewandt auf eine große
Ansammlung von Schüttgut .Voronoi-Zellen". Exakte Dichte-Wahr-
scheinlichkeitsfunktionen werden dann für die Verteilung der
Porenräume in gespeicherten Schüttgütern aufgestellt. Es wird
gezeigt, daß der Anfangszustand eines gespeicherten Schüttgutes
einem willkürlichen, lockeren Speicherzustand entspricht, bei
dem die Porenraumverteilung innerhalb des Schüttgutes gleich-
mäßig ist. Es wird weiter gezeigt, daß das Konzept der Verdichtung
oder Kompaktierung von Schüttgütern durch Vibration oder Lärm
einer abnehmenden Entropie und der Verlagerung der Dichte-Ver-
teilung in Richtung auf dichtere Zellen entspricht. Schließlich wird
ein Zusammenhang zwischen den kritischen Zustanden bei ein-
facher Scherung des Schüttgutes und dessen Zustand bei will-
kürlicher, lockerer Speicherung hergestellt.

Considerations mecaniques statistiques du stockage des solides
en vrac

On introduit la notion d'un espace geometrique probable pour les
solides Stockes en vrac et on developpe le concept de cellules
Voronoi' en vrac. On applique la theorie classique et le postulat de
Boltzmann ä une vaste collection de cellules Voronoi' en vrac. On
determine alors des fonctions de probabilite de la densite exactes

pour la distribution des vides dans les solides Stockes en vrac. On
demontre que l'etat initial dun solide entrepose en vrac

correspond a un etat de stockage libre dans lequel la distribution
des vides est uniforme dans la masse du solide. On demontre
aussi que le concept de tassement des solides Stockes en vrac du
fait du bruit ou des vibrations correspond ä une diminution de
l'entropie et au passage de la densite de distribution aux cellules
plus denses. Enfin, on etablit une relation entre les etats critiques
atteints lors du cisaillement des solides en vrac et l'etat de

stockage libre.

Consideraciones mecänicc-estadisticas del almacenamiento de
sölidos a granel

Se introduce un espacio de probabilidad geometrica para materias
sölidas almacenadas a granel y se estudia con detalle el concepto
de 'celdas Voronoi'. Se aplican la teoria estadistica cläsica y el
postulado de Boltzmann a una colecciön grande de celdas
Voronoi'. Se plantean funciones exactas de densidad y
probabilidad para la distribuciön de vacios en materias sölidas
almacenadas a granel. Se muestra que el estado inicial de un

Prof. Dr. M. Shahinpoor, Department of Mechanical and Industrial
Engineering, Clarkson College of Technology. Potsdam, NY 13676. USA

sölido almacenado a granel corresponde a un estado de
almacenamiento suelto aleatorio en el que la distribuciön de los
vacios es uniforme en todo el producto sölido acumulado a granel.
Se muestra asimismo que el concepto de densificaciön y
compactaciön vibratoria ö por ruido de sölidos almacenados a

granel corresponden a una entropia decreciente y al deplaza-
miento de la densidad de distribuciön hacia las celdas mäs
densas. Finalmente, se establece una relaciön entre los estados
criticos alcanzados en presencia del esfuerzo cortante sencillo de
los sölidos a granel y el estado de almacenamiento en forma
aleatoria suelta.

Summary

A geometrical probability space for the stored bulk solids is intro-
duced and the concept of bulk 'Voronoi Cells' is elaborated upon.
The classical statistical mechanical theory and the Boltzmann's
postulate is specialised to a large collection of bulk 'Voronoi Cells'.
Exact probability density functions for the distribution of voids in
stored bulk solids are then found. It is shown that the initial state
of a stored bulk solid corresponds to a /oose random sror/ng state
for which the void space distribution is uniform throughout the
bulk solid. It is further shown that the concept of vibratory and
noise densification or compaction of stored bulk solids correspond
to a decreasing entropy and the shift of distribution density
towards the population of denser cells. Finally, a connection
between the critical states reached in simple shearing of bulk
solids and the loose random storing-state is established.

Notation

Me)
5, S,

6s

. Star

volume distribution function
mean paniculate volume

paniculate volume standard deviation
void ratio s= ratio of void volume over

solid volume

porosity = ratio of void volume over

total volume
discrete probability
number of bulk 'Voronoi Cells'
discrete probability distribution of cells
probability distribution density
ensemble phase average or the

expected value

microscopic field functions
entropy
actual distribution density of cells
partition function
distribution parameter
bulk solid density
solid grain density
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1. Introduction

Stored bulk solids form a geometrical probability space for

the void space distribution which can be analyzed by statis-

tical mechanical considerations and useful results and con-

elusions may be obtained on their properties. As explained
by Shahinpoor[1] there exists a close link between the

random packing and storing of granular materials and bulk

solids and the geometrical theory of the structure of fluids.

If the bulk solids are stored randomly there is a great
tendency for the void spaces to form a uniform distribution

and this essentially corresponds to a state of maximum con-

figuration entropy. This randomly packed space will be

unstable in the fields of vibration and shear and tends to

density. The vibratory densification of stored bulk solids

forces the uniform void space distribution to become

skewed towards the population of smaller void spaces. We

shall elaborate on the above concepts in the present paper

and introduce the notion of a critical state for a stored bulk

solid. The physical correctness of uniform void space distri-

bution density for randomly packed bulk solids may be

argued on the basis of the correspondence of the critical

state to that of a random loose packing. In this sense a

randomly poured body of bulk solids creates equal oppor-

tunities, i.e., equal chances of formation, for all possible
microarrangements, merely due to its random nature.

Mogami [2] has elaborated on some experimental evidence

of uniform distribution of void spaces in randomly loose-

packed granular assemblies. Finney [3,4] has discussed this

problem in more detail and presented numerical results on

pertinent distributions.

In the present paper we intend to present some analytical
treatments on the statistical mechanical aspects of bulk

solids storage and derive the basic properties of the critical

states. However, we must discuss here that there have been

traditionally two different approaches to the modeling of

bulk materials. One is the macroscop/c approach which is

quite adaptable to various macroscopic experiments such

as the measurements of stress, strain, and strain rate. Such

treatments were proposed by Drucker and Prager [5], and

Spencer [6], The reader is referred to Brown and Richards [7],
and Kezdi [8] for various developments in this regard. The

second approach is the m/croscop/c or parf/ci//ate approach
in which one considers an assembly of rotund particles
capable of interacting in the presence of particle collisions

and interparticle friction. Mechanical laws concerning the

behavior of such aggregates can be deduced by ensemble

phase averages of the microscopic character of particle
interactions. Reynolds [9] is believed to be the initiator of

such an approach for the study of the mechanical properties
of bulk solids. Later, Newland and Allely [10], Rowe[11],
Home [12,13] added new contributions with regard to the

particulate approach. Since the mechanical properties of

bulk solids are very much dependent on the distribution of

void spaces as well as the particles themselves, one must

resort to statistical ensemble phase average approaches in

order to obtain meaningful results. Magami [2,14] was the

first to consider such statistical approaches for the mechan-

ical behavior of bulk solids. His approach had limited sue-

cess.

In the next section we shall discuss the geometrical proba-
bility distribution space for bulk solids and introduce the

notions of the bulk 'Voronoi Cells' and the entropy of spatial
configurations. In the process we shall discuss the relevance

of Boltzmann's postulate [15] to the basic characteristics of

bulk solids.
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2. Geometrical Probability Distribution

Space for Bulk Solids

Let us consider an aggregate of bulk solids composed
ideally of rotund particles with a volume distribution func-

tion /(u) such that /(u) can be assumed to be Gaussian, i.e.,

1
(1)

where Uq is the average particle volume and 5 is the volumet-

ric standard deviation. We assume this aggregate of bulk

solids is composed of cohesionless particles bound together
by some external force systems such as gravity and bound-

any tractions or simple hydrostatic pressure states. We

further assume that the container boundary's geometrical
constraints play minimal effects on the stored bulk solids'

geometrical distributions. The various types of packing that

can be produced by random pouring of bulk solids in large
containers have been discussed by Finney [3], based on the

previous results of Bernal and coworkers [1]. In the absence

of gravitational and frictional effects the range of critical

porosities has been found, for equal spheres, to be

0.363 ^ ttcr ^ 0.391. Microscopically speaking, the void

ratio e which is related to porosity n by

e = n/1 n, (2)

will not be uniform throughout the stored bulk solids aggre-

gate but rather it will have a geometrical distribution. We

adapt the line of approach of Finney [3] in considering the

bulk 'Voronoi polyhedron' as the unit all for the aggregate of

bulk solids. This cell has the added advantage that there is

only one polyhedron associated with each center, i.e.,
particle. Fig. 1 shows some typical corresponding cells for a

two-dimensional aggregate of equal hard disks.

Fig 1 Typical two-dimensional bulk Voronoi Cells

We employ the bulk 'Voronoi polyhedra' here for our statisti-

cal mechanical analysis of stored bulk solids. Each cell is

also called a characteristics microelement. The volume of

each single bulk 'Voronoi polyhedron' is denoted by v; and

thus the void ratio associated with each unit cell is e, such

that

r

e, =
rfl)

(3)

where VJ'> is the solid volume associated with each bulk

'Voronoi Cell'. Two or more cells with completely different

bulk polyhedral geometries may have the same void ratio e,.

If m, be the number of cells in a unit volume of bulk solids

having a void ratio e,, then we may define a probability distri-

bution fi, that

m,,

E o, = 1,

(4)

(5)
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where 0, is the probability of formation of a group of m, cells,
scattered throughout the unit volume, having a void ratio ?

and N is the total number of such groups in such a way that
c,'s, i = 1,2, , N, arranged in an ascending order span a

void ratio space from e, = ^ = e^ to e^ = e^a* = ^ The
expected value of the void ratio <? of the bulk solid aggregate
is then obtained as

= IQ, (6)

If the number of groups of bulk 'Voronoi Cells' is large
enough then one may assume that as N ? e one may define
a continuous probability density p(e) such that

f> =

or simply

Wi

= 1,

= (e>.

(7)

(8)

0)

(10)

where (e) denotes the expected value of bulk solids void
ratio e Let us note that the limits on the void ratioe, le,

eh ^ e ^ ?m depend on a number of factors These include
the gravitational as well as interparticle frictional effects
The particulate geometry also plays a role In the absence of
gravitational and frictional effect, ?, would correspond to the
densest geometrical arrangements of the cells In the
case of hard spherical particles *, is a known quantity
(ehi *** 0 3504) corresponding to a coordination number 12, i e,
that of the densest rhombohedral packing It is well known,
that <?m depends very much on the existing confining or over-

burden pressure on the bulk solids such pressures produce
internal shear failures on slip planes and render loose
arrangements unstable Therefore, e^ should be very sensi-

tive to interparticle friction angles Haruyama[16] has pre-

Sid Vi*v 1

Si* VI J

sented some clear results on the effect of particulate surface
roughness on the packing of bulk solids The more the inter
particle friction the larger the values of e^ and e^ will become
in typical packings of bulk solids In the absence of fnc-
tional effects for hard spherical particles e^ is roughly
e^ =090985 corresponding to the loose cubic packing hav-

ing a coordination number 6 Fig 2 shows the geometrical
arrangements of spheres corresponding to the above two
limits Tables 1 and 2 display, respectively, the typical three-
dimensional and two-dimensional bulk 'Voronoi Cells' For

aggregates of bulk solids with a size distribution the number
of possible Voronoi Cells becomes extremely large and the
use of continuous distribution becomes more justified

:oordlntlon
Nuaber

4

5

6

7

8

9

10

11
12

Symbol

[1.1.2]
[1.0.3]
(2.0.21
11.2.2]
12.1.2]

[1.2.21 (1.3.1)
[1.1.3]
[1.0.4]
[2.0.3]
(2.2.21
[2.2.2
11.2.3
(1.3.2

[2.2.21 (3.0.3 [1.4.1]
12.0.41

11.2.41 [2.2.3]
(2.3.21
[3.1.3]

[1.4.2] [1.5,1]
[2.2.4]
[1.5.2]
[2.2.4]

[3.2.3] [2.4.2] [1.6.1]
[4.0.4]
[1.4,4]

[2.5.2] [1.6.2]
[2.4.4] [1.6.3]

[2.5.3]
[4.2.41 [2,6.2]

[2.6.3]
(3.6.3) (4.4.4)

Porotlty

0 7181
0 6599
0 6599
0 6933
0 6298
0 5969
0 5790

0 5582
0 5373
0 6298

0 5578
0 5574
0 5546
0 4764

0 4 746
0 5132
0 5063
0 4918

0 4389
0 464 2

0 3985

0 3954
0 3954
0 3198
0 3866

0 3520
0 3343

0 3127
0 3019
0 2813
0 2595

Void Ratio

2 5*73
1 9403
1 9403
2 2605
1 7012
1 4808
1 3753
1 2635
1 1612
1 7017
1 2614
1 2594
1 2452
0 9098
0 9033
1 0542
1 0255
0 9677

0 7822
0 8664

0 6625
0 6540
0 6529
0 4702
0 6303

0 5432
0 5022
0 4550
0 4327

0 3908
0 3504

Cell Nuabcr

1
2
3
4

5
6

7

8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26
27

28
29

30
31

Table 1 Some typical three-dimensional bulk Voronoi Cells'

Coordination

Nuaber

Porosity

0 0931

0 1582

0 1582

0 2146

0 3954

Void Ratio

0 1027

0 1879

0 1879

0 2732

0 6540

Cell

Number

Fig 2 Cubic (a) and rhombohedral (b) packing of spheres Table 2 Some typical two-dimensional bulk 'Voronoi Cells'
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3. Statistical Mechanical Procedure Applied
to Stored Bulk Solids

In order to find the gross mechanical behavior of bulk solids

from microscopic properties it is necessary to define an

ensemble phase average Q denoted by (Q). Here Q is any
microscopic measurable quantity Q(e) which is a function of

the void ratio e, such that

(11)

We note that Q(e) can also be interpreted as the value of a

particular measurable property for a common group of bulk

'Voronoi Cells'. It is straight forward to generalize the above
definition to include other microscopic variables such as the

particle size and volume, coordination number, or contact

angles. Essentially we must have a knowledge of pertinent
distribution densities. It is interesting to note that,
essentially for most practical applications, the above

distributions, except for p(e), are Gaussian. Thus for any
microscopic variable G(e, u, 0, iV), where u is particulate
volume, 0 is the particulate contact angle, and N is the
coordination number we may define a gross average
G es G such that

0

(12)

where 9(0) and g(N) are, respectively, the distribution densi-

ties on contact angles and coordination number, u^ and u^,
are, respectively, the minimum and maximum particulate
volume, and N^, A/^ are, respectively, the minimum, maxi-

mum coordination numbers. If ß macroscopic average
(M<?)). r=1,2,...,]?, of microscopic field functions /z,(e)
associated with groups of bulk 'Voronoi Cells' can be

measured for an aggregate of bulk solids, then the

equations:

,
r = 1, 2,..., (13)

would serve as side constraints on any macroscopic extrem-

ization problem associated with such a medium.

According to the Boltzmann's postulate [15,17] one may link

the microscopic statistical theory and the macroscopic^
thermodynamics by considering the entropy S such that S

is in fact the expected value (S) of the microscopic entropy S

which is proportional to the logarithm of the total number of

possible or probable configurations that can be obtained by
arranging JV groups of bulk 'Voronoi Cells' in a given volume.

In our case

S=

or

= fc /"

(14)

(15)

It has been argued by Jaynes [18,19] and Kanatani [20] that

the correct representation of entropy should be

H=- (16)

where t(e) is the actual distribution density of states as

compared to the probability distribution density p(e) of

states. Since obviously expression (16) represents a certain

distance between the two distributions thus it may be con-

sidered as a measure of prejudice or bias of one distribution

against the other. There appears to exist some confusion in

the pertinent literature on this concept and on whether, H,
the Shannon's entropy [21] is related to the statistical

mechanical entropy S. We shall choose not to gojnto such

discussions in this paper and instead treat S as our

pertinent macroscopic entropy.

The classical Maxwell-Boltzmann equation for discrete

systems possesses solutions which describe the irreversible

movement of the aggregate towards equilibrium in such a

manner that

35
>0

so that finally at equilibrium

as
= 0, (at equilibrium).

(17)

(18)

So that the entropy S is a maximum at any equilibrium
state. This is, of course, in agreement with the second law of

thermodynamics. We assume that the above arguments
apply to stored aggregates of bulk solids in the sense that

any statistically equilibrated random aggregate of bulk

solids of average void ratio e is an equilibrated state pos-
sessing a maximum possible average entropy S corre-

sponding to e. Given a set of expectation values A, = (M<0)>
r=1,2,...,K for microscopic measurable quantities fy(e)
such that

(19)

(20)

the equilibrium distribution density p(e), for the bulk solid

aggregate, which maximizes S can be shown to be given by

(21)

where the partition function Z is given by the following
equation

)= y exp
r r

-\M (22)

and the X/s, r= 1,2,...,/?, are the solutions to the following
transcendental equations

(23)
ax,.

iZ(X,)], r = 1,2,...,/?.

We further note that

a\
(24)
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If e (<?) is the only gross quantity that can be measured,
then

p(<?) = X, exp f\,<?]/(exp [X,cJexp [X,e,J), (25)

such that X, can be found from the following transcendental

equation

1-X,gj gM exp ,XiCmII
} (26)

(27)

= XT*
L exp[X,eJexp[X,?,J

From equation (24) we observe that

ax, -=i
'

ax?

and thus, among all distributions, that tend to maximize S,
the uniform distribution tends to maximize S the most For
this distribution

as

ax,
,
= 0Vv=1,2, ,/?. (28)

We call the value of S^ corresponding to such a uniform
distribution the critical value and note that

= sup S = max (29)

OO)

(31)

where the subscript "cr" here indicates the critical state for
the bulk solid This state intuitively corresponds to the loose
random packing state of bulk solids This is when a bulk

solid is poured into a container, le, a silo or a bin, quite
randomly Thus, all possible bulk 'Voronoi Cells' have equal
chance of formation under the existing overburden pressure,

gravitational effects and interparticle frictional effects

Statistically speaking, for a large number of bulk cells the

aggregate ends up with equal number of all possible bulk
'Voronoi Cells' whose void ratio lies in the interval '*,. *m'
and thus giving rise to a uniform distribution of void ratio in

the bulk solids aggregate Note that the critical void ratio

corresponding to this case may be obtained as

(32)

Therefore for any stored bulk solid an estimate on the gross
bulk density e may be obtained by the following relation

2 +
(33)

where ^ is the solid density or the grain density, and ^ and

?M are the void ratios corresponding to the densest and the
loosest bulk 'Voronoi Cells'

4. Vibratory Densification of Stored Bulk
Solids

As a bulk solid aggregate is produced by random pouring it

produces a uniform distribution density at a maximum

entropy However, this state is extremely unstable under

dynamic disturbances, i e, shaking, tamping, vibrations, and

general noise Under such dynamic disturbances the /oose

random pacing state will gravitate towards a denser state

commonly referred to as a dense random pac/c/ng Obviously
a loose random packing in transition to a dense random

packing witnesses the collapse of looser bulk 'Voronoi Cells'

to denser ones and thus a new distribution density emerges
Thus, X, starts to vary throughout densification Since

entropy S^^ cannot become any larger throughout the

process of densification and compaction, therefore, through-
out this process

as

ax,
(34)

as X, is varied to produce the new geometrical distributions

of void spaces From equation (22) it is clear that

ax?
> (35)

Thus from equation (27) and the inequalities (34) and (35) we
conclude that throughout vibrating densification of bulk
solids X/s is always greater than zero and thus the probabil-
ity distribution density p(e) becomes skewed towards the

denser bulk'Voronoi Cells' Fig 3 shows the change in distn-

button due to vibratory densification

Loose Random State

Fig 3 Change in distribution density p(?) due to vibratory densification

Our conclusions are in agreement with numerically obtained
results and conclusions by Fmney [3,4] who states that this
skewness is to be expected, the restriction of the proportion
of high density cells reflecting the limited availability of

space in a packing whose overall density is close to the

upper limit, i e, dense random packing state

5. Plane Shearing of Bulk Solids
and the Critical State

Soil and bulk solids mechanicists have long known the

occurrence of a critical state in sufficiently and unidirec-

tionally plane sheared samples of such materials The reader

is referred to Roscoe, Schofield and Wroth [22] and Kezdi [8]
for discussion on this concept As also explained by Shahin-

poor[1] and [23] the critical void ratios reached in such

critical states tend to remain constant with further shearing
in the same direction and have values remarkably close to
the values of critical void ratios corresponding to /oose
random pac/c/ngs It is well known that, unless one starts

with a dense bulk solid, in the field of plane shear, bulk
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solids always undergo some initial densification as reported
by Kezdi[8], Roscoe, Schofield and Wroth [22] and Leslie

Youd [24]. However, eventually shear induces dilation and

the aggregate tends to become looser. Intuitively, it is

evident that there are great similarities between random

pouring and random shearing of individual bulk 'Voronoi

Cells' in bulk solids. Essentially shearing of bulk solids will

finally amount to a completely random process of creation

and collapse of bulk 'Voronoi Cells' under the existing con-

fining pressure in such a manner that all possible bulk

'Voronoi Cells' will have equal chances of being created or

being annihilated or collapsed, and thus there will continu-

ously exist equal numbers of all possible bulk 'Voronoi
Cells'. This of course would correspond to a uniform distri-

bution of such cells throughout the bulk solid's volume and a

globally maximum entropy as discussed before. Clearly, the

initial void ratio will have no effect on the final distribution of

void ratios in the shearing process. This fact has recently
been demonstrated by Shahinpoor [23] and Kanatani [20]
who has presented an ergodic theoretic argument on the

growth of entropy and dilation of granular materials with

shearing.

6. Conclusions

The concept of bulk 'Voronoi Cells' can be successfully
employed for the mechanical description and handling of

bulk solids. The critical void ratios obtained in simple
shearing of bulk solids should be the same as the critical

void ratios obtained for the /oose ranc/om pac/c/ngr of bulk

solids under the same confining pressure. The distribution

density for such critical states is uniform. However, vibratory
and noise densification of bulk solids causes such uniform

distributions to become Maxwellian and skewed towards the

population of denser bulk 'Voronoi Cells'. An equation for the

determination of critical bulk densities was given and an

inequality governing the process of vibratory densification of

bulk solids was derived. Some typical bulk 'Voronoi Cells' for

both two-dimensional and three-dimensional bulk assem-

blies were also presented.
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