Catenary equation.

A catenary has the same mathematical formula as an arch, whereby the compression forces in the arch are replaced by the tension in a chain or a belt

MATHEMATICAL EQUATION OF AN ARCH

General equation of an arch (as an inverse catenary):
$y=\lambda * \cosh \left(\frac{x}{\lambda}+C\right)+a \quad y^{\prime}=\sinh \left(\frac{x}{\lambda}+C\right)$

For $x=0 \rightarrow y=0$
$y^{\prime}(0,0)=f_{\text {wall }}=\tan \left(\varphi_{\text {wall }}\right)=\sinh (C)$
from: $\quad f_{\text {wall }}=\sinh (C) \quad$ follows: $\quad \frac{e^{C}-e^{-C}}{2}=f_{\text {wall }}$
resulting in: $\quad e^{C}-e^{-C}-2 * f_{\text {wall }}=0$

In case:

$$
x=e^{C} \quad x-\frac{1}{x}=2^{*} f_{\text {wall }}
$$

$$
x^{2}-2 * x * f_{\text {wall }}-1=0
$$

$$
x=\frac{2 * f_{\text {wall }}+\sqrt{\left(2 * f_{\text {wall }}\right)^{2}+4}}{2}
$$

then: $\quad C=\ln (x)=\ln \left(\frac{2 * f_{\text {wall }}+\sqrt{\left(2 * f_{\text {wall }}\right)^{2}+4}}{2}\right)$

For $x=0 \rightarrow y=0$
$0=\lambda * \cosh \left(\frac{0}{\lambda}+C\right)+a \quad \rightarrow \quad a=-\lambda * \cosh (C)$
For $x=x_{2} \rightarrow y=0$
in case : $\quad Q=\left(x_{2}+C\right)$
then $: \quad \sinh (Q)=-y^{\prime}=-f_{\text {wall }}$

$$
f_{\text {wall }}=\sinh (C)
$$

$$
e^{Q}-e^{-Q}=-2 * \sinh (C)
$$

$$
e^{Q}-e^{-Q}=-e^{C}+e^{-C}=e^{-C}-e^{C}
$$

resulting in:

$$
Q=-C
$$

$$
\begin{align*}
& -C=\left(\frac{x_{2}}{\lambda}+C\right) \\
& \lambda=-\frac{x_{2}}{2 * C} \tag{3}
\end{align*}
$$

Using the formulas, the equation for the arch can be calculated as follows:

- calculate

$$
C=\ln \left(\frac{2 * f_{\text {wall }}+\sqrt{\left(2 * f_{\text {wall }}\right)^{2}+4}}{2}\right)
$$

- calculate

$$
\lambda=-\frac{x_{2}}{2 * C}
$$

- calculate

$$
a=-\lambda * \cosh (C)
$$

- calculate any point on the arch with:

$$
y=\lambda * \cosh \left(\frac{x}{\lambda}+C\right)+a
$$

