Catenary equation.

A catenary has the same mathematical formula as an arch, whereby the compression forces in the arch are replaced by the tension in a chain or a belt

MATHEMATICAL EQUATION OF AN ARCH

General equation of an arch (as an inverse catenary):

$$y = \lambda * \cosh\left(\frac{x}{\lambda} + C\right) + a$$
 $y' = \sinh\left(\frac{x}{\lambda} + C\right)$

For $x=0 \rightarrow y=0$

$$y'_{(0,0)} = f_{wall} = \tan \left(\varphi_{wall} \right) = \sinh \left(C \right)$$

from: $f_{wall} = \sinh(C)$ follows:

$$\frac{e^{C}-e^{-C}}{2}=f_{wall}$$

resulting in : $e^{C} - e^{-C} - 2 * f_{wall} = 0$

In case:

$$x = e^{C} \quad x - \frac{1}{x} = 2 * f_{wall}$$
$$x^{2} - 2 * x * f_{wall} - 1 = 0$$

$$x = \frac{2 * f_{wall} + \sqrt{(2 * f_{wall})^2 + 4}}{2}$$

then: $C = \ln(x) = \ln\left(\frac{2 * f_{wall} + \sqrt{(2 * f_{wall})^2 + 4}}{2}\right)$ (1)

For $x=0 \rightarrow y=0$

$$0 = \lambda * \cosh\left(\frac{0}{\lambda} + C\right) + a \quad \Rightarrow \qquad a = -\lambda * \cosh\left(C\right)$$
(2)

For $x = x_2 \rightarrow y=0$

in case : $Q = (x_2 + C)$

then

resulting in:

: $\sinh (Q) = -y' = -f_{wall}$ $f_{wall} = \sinh (C)$ $e^{Q} - e^{-Q} = -2 * \sinh (C)$ $e^{Q} - e^{-Q} = -e^{C} + e^{-C} = e^{-C} - e^{C}$ Q = -C $-C = \left(\frac{x_2}{\lambda} + C\right)$

$$\lambda = -\frac{x_2}{2*C} \tag{3}$$

Using the formulas, the equation for the arch can be calculated as follows:

- calculate
$$C = \ln \left(\frac{2 * f_{wall} + \sqrt{(2 * f_{wall})^2 + 4}}{2} \right)$$

- calculate
$$\lambda = -\frac{x_2}{2 * C}$$

- calculate
$$a = -\lambda * \cosh(C)$$

- calculate any point on the arch with:
$$y = \lambda * \cosh\left(\frac{x}{\lambda} + C\right) + a$$