	CONTENTS	Page number
Chapter 1	Bulk material handling plants and conveyors	1 to 9
1.0.0	Need for bulk material handling plant with conveyors	1 to 2
<u>1.1.0</u>	Introduction to bulk material handling plant	2 to 9
1.1.1	System description	4 to 7
1.1.2	List of major equipment and structures for the plant	7 to 9
Chapter 2	Introduction to belt conveyor	10 to 16
2.0.0	Introduction to belt conveyor	10
2.1.0	Main mechanical components in a conveyor	10 to 11
2.2.0	Belt conveyor function	11 to 12
2.3.0	Conveyor-profiles (conveying-paths)	12
2.4.0	Method of feeding/loading belt conveyor	13 to 14
2.5.0	Method of discharge from belt conveyor	14 to 16
Chapter 3	Bulk materials	17 to 24
3.0.0	Bulk materials	17
3.1.0	Bulk density	17
3.2.0	Repose angle	18
3.3.0	Surcharge angle	18 to 19
3.4.0	Abrasiveness	19
3.5.0	Material size	19
3.6.0	Other characteristics	19
3.7.0	Material characteristic data (table-1)	20 to 24
Chapter 4	Belts	25 to 73
4.0.0	Belts	25
4.1.0	Carcass functions and types	26
4.2.0	Covers functions and types	26 to 28
4.3.0	Belt types	28
<u>4.4.0</u>	Textile fabric belts	28 to 36
4.4.1	Textile fabric multi-ply conventional belts	30 to 33
4.4.2	Reduced ply fabric belts (special ply fabric belts)	34 to 35
4.4.3	Fabric belt data for conveyor design	35 to 36
<u>4.5.0</u>	Steel cord belts	36 to 39
4.5.1	Steel cord construction	37
4.5.2	Steel cord belt construction	37 to 38
4.5.3	Steel cord belt characteristics and application	38
4.5.4	Steel cord belt range	38 to 39
4.5.5	Steel cord belt data for conveyor design	39
<u>4.6.0</u>	Design requirements in belt selection	39 to 61
4.6.1	Stiffness/load support	39
4.6.2	Impact strain	39 to 42
4.6.3	Belt tension rating	42 to 43
4.6.4	Troughability	43
4.6.5	Belt cover thickness	43 to 46

4.6.6	Choice of carcass type	46 to 47
4.6.7	Belt selection procedure	47 to 48
	Examples-1, 2, 3 & 4	49 to 59
4.6.8	Note on energy loss / carry forward factor for a lump	59 to 61
	Fabric belts' table 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2f and 2j	61 to 69
	Steel cord belts' table 3a, 3b, 3c and 3d	70 to 73
Chapter 5	Idlers	74 to 134
5.0.0	Idlers	74
5.1.0	Idlers function	74 to 75
<u>5.2.0</u>	Rolls (Rollers)	75 to 80
5.2.1	Shell	76 to 77
5.2.2	Housing	77
5.2.3	Sealing	77
5.2.4	Bearings	77 to 78
5.2.5	Spindles	78
5.2.6	Greasing	78
5.2.7	Roll breathing	79 to 80
5.2.8	Roll Quality	80
<u>5.3.0</u>	Fixed frame idlers	81 to 88
5.3.1	Troughing idlers (Trough carrying idlers)	81 to 82
5.3.2	V - trough carrying idlers (2 - roll trough carrying idlers)	83
5.3.3	Flat carrying idlers	83 to 84
5.3.4	Impact idlers (Trough impact idlers)	84
5.3.5	V - type impact idlers (2 - roll impact idlers)	84
5.3.6	Flat impact idlers	85
5.3.7	Flat return idlers (Single roll return idlers)	85
5.3.8	V - type return idlers (2 - roll return idlers)	85 to 86
5.3.9	Self aligning carrying idlers (S.A. carrying idlers)	86
5.3.10	Self aligning return idlers (S.A. return idlers)	86 to 87
5.3.11	Special purpose idlers	87 to 88
<u>5.4.0</u>	Garland idlers	88 to 95
5.4.1	Garland idler profile under load	91
5.4.2	Garland 3 - roll carrying idlers	91 to 92
5.4.3	Garland 5 - roll carrying idlers	92
5.4.4	Garland 3 - roll impact idlers	92 to 93
5.4.5	Garland 5 - roll impact idlers	94
5.4.6	Garland 2 - roll return idlers	94 to 95
<u>5.5.0</u>	Main reason for belt misalignment	95 to 97
5.5.1	Misaligned idlers center line	96
5.5.2	Off center loading of material	96 to 97
5.5.3	Wind force	97
5.5.4	Misaligned center line of pulleys	97
5.5.5	Faulty belt carcass	97
<u>5.6.0</u>	Engineering analysis of selfaligning action by idlers	98 to 115

5.6.1	Pivoted self-aligning idler (includes example-1)	98 to 103
5.6.2	Inclined aligning force effect along conveyor width (includes example-2)	103 to 106
5.6.3	S.A. force due to trough shape and gravity (includes example-3)	106 to 108
5.6.4	Forward tilt for idlers (includes example-4)	108 to 111
5.6.5	S.A. force due to bow - string effect (includes example-5)	112 to 115
5.7.0	Rollers and idler- sets dimensions (includes table-4)	115 to 119
5.8.0	Roller design (includes table-5 and example-6, 7 & 8)	119 to 123
	Table - 6 : Rotating mass of one roller	124 to 131
	Example-9 on breathing hole	132 to 134
Chapter 6	Capacity evaluation in system	135 to 141
6.0.0	Capacity evaluation in system	135
6.1.0	Guaranteed capacity	135
6.2.0	Design capacity	135 to 136
6.3.0	Examples-1, 2 & 3 for capacity calculation	136 to 140
6.4.0	Notes on conveyor capacity (for load / forces)	140 to 141a
Chapter 7	Belt width, speed and capacity	142 to 207
7.0.0	Design for belt width, speed and capacity	142
7.1.0	Functional requirements for belt width	142
<u>7.2.0</u>	Necessary belt width for lump size	142 to 148
7.2.1	Belt width for material - X	144
7.2.2	Belt width for material - Y	144 to 145
7.2.3	Other consideration to lump size	145 to 148
	Table – 7: Permissible maximum lump size (for belt width)	146 to 148
7.3.0	Selection of surcharge angle (includes table-8)	148 to 150
7.4.0	Recommended belt speeds (guide values)	151 to 153
	Table – 9: Recommended maximum belt speed in m /sec	152
7.5.0	Necessary belt width for capacity	154 to 207
7.5.1	Material cross - section on belt	155
7.5.2	Cross - section on belt - 3 roll troughing idlers (for equal / unequal roll) - derivations	155 to 161
7.5.3	Cross - section on belt - 2 roll troughing idlers - derivations	161 to 164
7.5.4	Cross - section on flat belt - derivations	165 to 166
7.5.5	Cross - section on belt - 5 roll troughing idlers - derivations	166 to 172
7.5.6	Effect on cross - section by gap between rollers (includes table-10 & 11)	173 to 174
7.5.7	Comparison of area, parabolic and circular arc (includes table-12)	174
7.5.8	Reduction in cross section area due to belt bending radius	175
7.5.9	Reduction in cross - section area due to conveyor inclination	175 to 177
7.5.10	Reduction in cross - section area or conveying ability due to fill factor	177 to178
7.5.11	Conveyor potential (ability) for capacity	178 to 179
7.5.12	Principles for selection of belt width and speed	179 to 181
7.5.13	Use of table - 13, 14, 15, 16, 17, 18 and 19 for cross – section area on belt	181 to 182
7.5.14	Examples-1, 2 & 3	182 to 188
	Table - 13: Material cross – section area (parabolic arc) for 3 – roll idler	189 to 193
	Table - 14: Material cross - section area (circular arc) for 3 – roll idler	194 to 198
	Table - 15: Material cross - section area (parabolic arc) for 2 – roll idler	199 to 200

	Table - 16: Material cross - section area (circular arc) for 2 – roll idler	201 to 202
	Table - 17: Material cross - section area (parabolic arc) for flat roll idler	203
	Table - 18: Material cross - section area (circular arc) for flat roll idler	204
	Table - 19: Material cross - section area (parabolic arc) for 5 - roll idler	205 to 206
	Table - 20: Conveyor inclination factor	207
Chapter 8	Material behaviour on belt	208 to 261
8.0.0	Material behaviour on belt for transverse load	208 to 210
8.1.0	Liquid side pressure / force	211
<u>8.2.0</u>	Rankine theory	212 to 221
8.2.1	Active pressure / force	212 to 213
8.2.2	Passive pressure / force	213 to 216
8.2.3	Material side thrust on inclined face	216 to 217
8.2.4	Rankine theory application to material on belt	217 to 221
	Table - 21: Rankine factors	218
<u>8.3.0</u>	Coulomb - Rebhann wedge theory (coulomb theory)	221 to 235
8.3.1	Active force Fa per meter	223 to 224
8.3.2	Passive force Fp per meter length of conveyor	224
8.3.3	Effective force Fs on side roller, per meter length of conveyor	225 to 226
8.3.4	Derivation of wedge slope β	226 to 234
	Table - 22: Coulomb factors	235
8.4.0	Method - 3 (Empirical method)	235 to 236
8.5.0	Method - 4 (ISO formula)	237
8.6.0	Load on middle roller (includes table-23)	237 to 238
8.7.0	Concluding remark	238 to 239
8.8.0	Belt edge clearance "C" at 90 % utility of material cross section on 3 - roller idler set	239 to 240
	(includes table-24 & 25)	
8.9.0	Examples-1, 2, 3, 4, 5, 6, 7 & 8	240 to 261
Chapter 9	Belt cleaners	262 to 280
9.0.0	Belt cleaners	262
<u>9.1.0</u>	External belt cleaner	262 to 278
9.1.1	Single blade external belt scraper (cleaner)	263 to 264
9.1.2	Double blade external belt scraper (cleaner)	264
9.1.3	Skew multi - blade external belt scraper (cleaner)	264 to 265
9.1.4	Cleaning force analysis	265 to 271
9.1.5	Specialised external belt scraper (cleaner)	271 to 274
9.1.6	Comparison between conventional and specialised blade scraper	274 to 275
9.1.7	Other external cleaners	275 to 278
9.2.0	Internal belt cleaner	278 to 279
9.3.0	Pulley cleaner	279 to 280
9.4.0	Scraper design parameters	280
Chapter 10	Belt tractive pull and power	281 to 364
10.0.0	Belt tractive pull and power	281 to 282
10.1.0	Symbols for engineering quantities	282 to 285

10.2.0	Basic engineering rules on friction	285 to 287
10.3.0	Method adopted for calculation of the tractive pull at steady state	287
<u>10.4.0</u>	Slope resistance, Fsl	287 to 289
10.4.1	Slope resistance carrying run, Fslc	287 to 288
10.4.2	Return run slope resistance, Fslr	288 to 289
10.5.0	Material acceleration resistance, Fa	289 to 290
<u>10.6.0</u>	Main resistance	290 to 315
10.6.1	Rotational resistance of idlers	290 to 293
10.6.2	Belt flexure resistance	293 to 294
10.6.3	Material flexure resistance	294 to 295
10.6.4	Basis for artificial friction coefficient of conveying, 'f'	295 to 296
10.6.5	Calculation of 'f' for conveyor with positive power	296 to 298
10.6.6	Calculation of 'f' for conveyor with negative power	298 to 299
10.6.7	Division of 'f' into constituent coefficients (includes table-26, 26A, 27 & 27A)	299 to 303
10.6.8	Reasons for earlier said + increment in 'f' (includes table-28, Ex. 1, 2, 3, 4, 5 & 6)	303 to 315
<u>10.7.0</u>	Idlers tilt resistance	315 to 326
10.7.1	Tilt resistance by a roller	316 to 317
10.7.2	Tilt resistance for 2 - roll return idlers	317 to 318
10.7.3	Tilt resistance for 2 - roll carrying idlers	318 to 320
10.7.4	Tilt resistance for 3 - roll troughing idlers (includes example-7 & 8)	320 to 322
10.7.5	Forward tilt for garland idlers due to inclination (includes example-9)	323 to 326
<u>10.8.0</u>	Skirt board resistance, Fsk1 and Fsk2	326 to 339
10.8.1	Acceleration zone length La within skirt - board (includes example-10, 11, 12 & 13)	327 to 336
10.8.2	Skirt - board resistance, Fsk1	336 to 337
10.8.3	Skirt - board resistance, Fsk2 (includes example-14)	337 to 339
<u>10.9.0</u>	Belt scraper's (cleaner's) resistance	339 to 341
10.9.1	External belt cleaner resistance, Fce	340
10.9.2	Internal belt cleaner resistance, Fci (includes example-15)	340 to 341
10.10.0	Rotary nylon brush cleaner (external belt cleaner), Fce	341
10.11.0	Rotary rubber blades cleaner (external belt cleaner), Fce	341 to 342
10.12.0	Pulley cleaner resistance, Fcp	342
10.13.0	Discharge plough resistance (includes example-16 & 17)	342 to 347
<u>10.14.0</u>	Resistance due to related machine	347 to 349
10.14.1	Plough feeder	347
10.14.2	Travelling tripper (includes example-18)	348
10.14.3	Reclaimer machine	349
10.14.4	Fixed tripper	349
10.15.0	Pulley turning resistance, Ft	349 to 350
10.16.0	Belt wrap resistance around pulleys , Fw	350 to 352
10.17.0	Conveyor running resistance summary	352
10.18.0	Conveyor resistance summary table-29	353 to 355
10.19.0	This chapter and conveyor design	356
	Example-19	356 to 364

Chapter 11	lake - up devices	365 to 385
11.0.0	Take - up devices	365
11.1.0	Screw take - up	365 to 366
11.2.0	Vertical gravity take - up	366 to 367
11.3.0	Horizontal gravity take - up device	368 to 370
<u>11.4.0</u>	Winch take - up device (fixed type)	370 to 373
11.4.1	Stretching the belt for tension	372
11.4.2	Winch take - up operation	372
11.4.3	Application	373
<u>11.5.0</u>	Principles for take up effect on belt tensions	373 to 377
11.5.1	Floating take - up pulley (gravity force)	373 to 374
11.5.2	Non floating take - up pulley	374 to 377
11.6.0	Active winch take - up device	377 to 378
11.7.0	Accidental fall of gravity take - up mass (includes example-1)	378 to 381
11.8.0	Take up stroke (includes table-30 & 31, example-2)	381 to 383
11.9.0	Rope and sheave system particulars for take up	384
11.10.0	Sheave frictional resistance effect on take up force	384 to 385
Chapter 12	Drive units	386 to 408
12.0.0	Drive units	386 to 387
12.1.0	Electric motor	387
<u>12.2.0</u>	Gear boxes	388 to 394
12.2.1	Foot mounted worm gear box	388 to 389
12.2.2	Shaft mounted worm gear box	389 to 390
12.2.3	Horizontal foot mounted geared motor	390 to 391
12.2.4	Parallel shaft helical gear box	391
12.2.5	Bevel - helical gear box foot mounted	391 to 392
12.2.6	Bevel - helical gear box shaft mounted	392 to 393
12.3.0	Chain drive	393 to 394
12.4.0	V - belt drive	394
12.5.0	Mechanical power transmission efficiency of speed reduction mechanism	
	(includes table-32)	394 to 395
<u>12.6.0</u>	Flexible coupling	395 to 399
12.6.1	Pin & rubber bush coupling	397
12.6.2	Geared type flexible coupling	397 to 398
12.6.3	Grid type flexible coupling	398 to 399
<u>12.7.0</u>	Fluid coupling	399 to 404
12.7.1	Traction type fluid coupling	399
12.7.2	Traction type fluid coupling with delay chamber	400 to 401
12.7.3	Three chambers traction type special fluid coupling	401
12.7.4	Scoop type fluid coupling	402 to 403
12.7.5	Fill controlled turbo fluid coupling	403 to 404
<u>12.8.0</u>	Back stop (hold back)	404 to 406
12.8.1	Pawl and ratchet type	405
12.8.2	Differential band brake type	405

12.8.3	Free wheel type (Roller hold back and sprag type hold back)	405 to 406
12.8.4	Hold back (back stop) mounting	406
12.9.0	Guards	407
12.10.0	Base frame	407
12.11.0	Notes on drive units	407 to 408
Chapter 13	Belt tensions and conveyor design	409 to 537
13.0.0	Belt tensions and conveyor design	409 to 411
<u>13.1.0</u>	Minimum tension in belt	411 to 415
13.1.1	Minimum tension for application of tractive pull to belt	411 to 413
13.1.2	Minimum tension in belt to limit sag	413 to 415
13.2.0	Pulley belt friction coefficient and wrap angle (includes table-33, 34, 35 & 36)	415 to 418
13.3.0	Belt tension symbols	418
<u>13.4.0</u>	Principles for calculating tensions in belt at various locations	419 to 422
13.4.1	T_3 during steady state operation	419 to 420
13.4.2	T ₃ during starting / stopping of conveyor	420
13.4.3	Calculation of tension T ₄	421
13.4.4	Belt tension T _x at any point along conveyor	421 to 422
13.5.0	Effect on belt tensions due to number of drives	422 to 423
<u>13.6.0</u>	Drive distribution arrangement for conveyor	423 to 427
13.6.1	Drive distribution based on reduction in tension alone	423 to 424
13.6.2	Commonly used drive distribution (for economy, etc.)	424 to 426
13.6.3	Notes on drive distribution in conveyor	427
<u>13.7.0</u>	Take-up effect on tension calculation	427 to 431
13.7.1	Floating take-up pulley (gravity take-up)	428 to 429
13.7.2	Fixed take-up pulley (screw / winch take-up)	429 to 431
<u>13.8.0</u>	Equivalent linearly moving mass of belt conveyor	431 to 433
13.8.1	Equivalent moving mass for idlers, pulleys	432
13.8.2	Equivalent moving mass for drive unit	432 to 433
13.9.0	Material loading on partial length/s of conveyor	433
<u>13.10.0</u>	Relationship among conveyor starting (braking) factors	434 to 439
13.10.1	Starting factors relationship (for conveyors of + resistance during steady state) (includes example-1)	435 to 437
13.10.2	Braking factors relationship (for conveyors of + resistance during steady state)	437 to 439
13.11.0	Idler spacing (includes table-37)	440 to 441
<u>13.12.0</u>	Adjustment in value of conveying resistance to suit calculation purpose	441 to 443
13.12.1	Belt conveyor of positive power	442
13.12.2	Belt conveyor of negative power (regenerative conveyor)	442 to 443
<u>13.13.0</u>	Belt carcass selection for longitudinal strength	443 to 447
13.13.1	Safety factors for belt tensions	443 to 445
13.13.2	Belt unit strength at joint	445
13.13.3	Joint efficiency	445 to 446
13.13.4	Belt strength selection (includes example-2)	447
13.14.0	How to proceed with design	447 to 448
13.15.0	Conveyor length coefficient-C	448 to 449

 449 to 454 449 to 450 450 450 to 451 451 to 452 452 452 452 to 454 454 454 to 465
449 to 450 450 450 to 451 451 to 452 452 452 452 452 to 454 454
450 450 to 451 451 to 452 452 452 452 to 454 454
450 to 451 451 to 452 452 452 452 to 454 454
451 to 452 452 452 452 to 454 454 454 to 465
452 452 452 to 454 454
452 452 to 454 454
452 to 454 454 454 to 465
454 454 to 465
454 to 465
-0-10-00
454 to 455
455
455 to 456
456 to 464
464 to 465
465 to 479
466 to 468
468 to 470
470 to 475
475 to 476
476 to 477
477 to 479
479 to 480
480 to 499
499 to 501
501 to 518
518 to 520
520 to 532
533 to 537
533
533 to 534
534 to 537
538 to 547
538
538 to 540
539
539
539 to 540
540 to 545
511 to 510
541 10 543
541 to 543

Chapter 15	Pulleys	548 to 568
15.0.0	Pulleys (includes table-41)	548 to 549
<u>15.1.0</u>	Conventional pulleys (pulleys with plate diaphragms)	549 to 554
15.1.1	Pulley construction	550 to 551
15.1.2	Plummer blocks	551 to 552
15.1.3	Rubber lagging (includes table-42)	552 to 553
15.1.4	Pulley crowning	553 to 554
15.2.0	Pulley behaviour under load (brief information)	554 to 555
<u>15.3.0</u>	Pulley with turbo – diaphragms	555 to 558
15.3.1	Pulley construction	556 to 557
15.3.2	Taper lock elements	557 to 558
15.3.3	Other components of turbo diaphragms pulley	558
15.4.0	External forces acting on pulley	558 to 559
<u>15.5.0</u>	Pulley shaft design	559 to 568
15.5.1	Basic information on forces, torque and bending moment acting on pulley shaft	559 to 561
15.5.2	Theories on shaft design based on stresses	561 to 565
15.5.3	Shaft deflection	566
	Example:	567 to 568
Chapter 16	Conveyor frame	569 to 587
16.0.0	Conveyor frame	569
16.1.0	Frame for stationary conveyor	569 to 576
16.1.1	Head terminal	570
16.1.2	Tail terminal	571
16.1.3	Bend-pulleys support	572
16.1.4	Stringers	572
16.1.5	Stands	572 to 574
16.1.6	Decking plate	574 to 575
16.1.7	Wind guard	575 to 576
16.1.8	Belt cover	576
<u>16.2.0</u>	Conveyor frame for shiftable conveyors	576 to 587
16.2.1	Application	577 to 579
16.2.2	Composition of shiftable conveyor frame	579 to 580
16.2.3	Drive head station (DH)	580 to 584
16.2.4	Return station / Tail station (RS)	584 to 585
16.2.5	Modules (Intermediate stations)	585 to 587
16.2.6	Approach bridge	587
16.2.7	Intermediate feed station	587
Chapter 17	Super structure	588 to 603
17.0.0	Super structure (Elevated structure)	588
17.1.0	Conveying system needs super structures	588 to 589
17.2.0	Items of super structure	589 to 590
17.3.0	Design norms and requirements	590 to 591
<u>17.4.0</u>	Super structure specification with respect to application	590 to 603
17.4.1	Gantry (Open gantry)	591 to 592

17.4.2	Gallery (Closed type gantry)	592 to 594
17.4.3	Trestles	594 to 595
17.4.4	Houses for conveying system (Also includes some information on	595 to 601
	springs and viscous dampers vibration isolation)	
17.4.5	Sheds	601 to 603
17.4.6	Cross over	603
Chapter 18	Conveyor profile in vertical plane	604 to 612
18.0.0	Conveyor profile in vertical plane	604
18.1.0	Curvature effect on tension distribution within belt	604 to 605
18.2.0	Nomenclature	605 to 606
18.3.0	Concave curvature / radius	606 to 608
18.4.0	Convex curvature / radius	608 to 609
18.5.0	Transition length (includes table-43)	609 to 611
	Example	611 to 612
Chapter 19	Introductory information on equipment associated with belt conveyor	613 to 625
19.0.0	Introductory information on equipment associated with belt conveyors	613
19.1.0	Feeders (belt feeders, vibrating feeders, apron feeders, and paddle feeders)	613 to 615
19.2.0	Belt weigher	615 to 616
19.3.0	Magnetic separators (suspension magnet, cross belt type and in line belt type)	616 to 618
19.4.0	Dust control equipment (dust extraction / collection type and dust suppression type)	618 to 619
19.5.0	Sampling system	619 to 620
19.6.0	Unloading equipment (wagon tippler, truck tippler and ship unloader)	620 to 621
19.7.0	Stockyard machines	621 to 625
	Stackers	621
	Reclaimers (side scraper reclaimer, portal scraper reclaimer, bridge type	621 to 623
	scraper reclaimer, bucket- wheel on boom and bucket wheel on bridge)	
	Blending / homogenization of bulk materials.	623 to 625
19.8.0	Horizontal curved conveyor, introductory information	625 to 634
19.8.1	Inward force (main), Fi	625 to 626
19.8.2	Belt and material usual forces on idler; Fu	626 to 627
<u>19.8.3</u>	Outward forces (main); Fo	627 to 628
<mark>19.8.4</mark>	Stabilising force Fs	628 to 629
<mark>19.8.5</mark>	Belt stability in horizontal curve	629 to 630
<mark>19.8.6</mark>	Combined influence of forces along interface, to actually shift belt	630 to 631
<mark>19.8.7</mark>	Principal design checks for belt stability and numerical example-1	631 to 634
	Horizontal curved conveyor application	<mark>710</mark>
19.9.0	Cylindrical belt conveyor or (pipe conveyor / tube conveyor)	634 to 635
Chapter 20	Material discharge trajectory	636 to 643
20.0.0	Material discharge trajectory at conveyor discharge pulley	<mark>636</mark>
20.1.0	Free fall material motion, general rule	<mark>637</mark>
20.2.0	Trajectory starting point location, from belt on pulley	637 to 638
20.3.0	Case-1: [v ² ÷ (R . g)] ≥ 1.0	638 to 639
20.4.0	Case-2: [v ² ÷ (R . g)] < 1.0	639 to 640

	Example	640 to 643
Chapter 21	Travelling tripper	644 to 663
21.0.0	General	<mark>644</mark>
21.1.0	Construction	644 to 648
21.2.0	Travelling tripper design	648 to 649
21.3.0	Tripper travel resistance and travel drive power	649 to 659
21.3.1	Frictional resistances at interface of tripper and belt	649 to 651
21.3.2	Material lift resistance at tripper	651 to 652
21.3.3	Travel wheel system resistance	652 to 654
21.3.4	Miscellaneous resistances	654 to 655
	Example-1	655 to 659
21.4.0	Concave Curvature Zone for Tripper	659 to 661
21.4.1	Belt conveyor design to suit tripper	<mark>660</mark>
21.4.2	Tripper concave radius	660 to 661
	Example	661 to 663

Chapter 22	Foundation loads	664 to 672
22.0.0	Foundation Loads	<mark>664</mark>
22.1.0	General	664 to 665
22.2.0	General rule for calculating foundation load.	665 to 667
22.3.0	Foundation load depiction.	<mark>667</mark>
22.4.0	Static and dynamic loads	<mark>667</mark>
22.5.0	Belt conveyor items foundation load	667 to 672
22.5.1	Tail terminal	<mark>668</mark>
22.5.2	Head terminal	668 to 670
22.5.3	Bend pulleys support frame	<mark>670</mark>
22.5.4	Stringer-stand frame	670 to 671
22.5.5	Drive units	671 to 672
22.5.6	Vertical gravity take-up	<mark>672</mark>
22.5.7	Super structure	<mark>672</mark>

A-0.0	Addendum	673-714
A-2.0	Chapter-2, flow division by two way chute	673 to 674
A-3.0	Chapter-3, friction coefficient between material and steel plate	674 to 675
A-4.0	Chapter-4, book includes amended table-2f. Its related information in addendum.	657 to 676
A-5.0	Chapter-5	676 to 697
A-5.1	Idler diameter, pitch and stress strain in belt bottom cover	676 to 677
A-5.2	General information about rubber	677 to 678
A-5.3	Rubber stress strain characteristics	678 to 682
A-5.4	Usual method to find stress strain rubber block with example-5 / 1	682 to 683
A-5.5	Belt strain while on roller / idler	683 to 686
	Example-5/2, 5/3 and 5/4	686 to 693
A-5.6	Notes about rubber and stress strain characteristics	693 to 694
A-5.7	Belt sag approach angle to roller	694 to 695
A-5.8	Sag implication on belt stress strain	695 to 696

<mark>A-5.9</mark>	Notes about rubber and stress strain characteristics	696 to 697
A-6.0	Chapter-6, Variations in ship unloading rate due to sea level, fully loaded	697 to 699
	ship, partially loaded ship, etc. and grab bucket unloader test rated capacity	
<mark>A-9.0</mark>	External scraper additional information	700 to 703
	Example-9/1	701 to 703
<mark>A-10.0</mark>	Chapter-10	703 to 704
A-10.1	Conveyor friction coefficient 'f', its variability and design consideration for it,	
	installed power and consumed power	703
<mark>A-10.2</mark>	Information about idler diameter influence on 'f	703
A-10.3	Constituent of 'f'	703 to 704
A-13.0	Chapter 13	704 to 706
A-13.1	General note about this chapter	<mark>704</mark>
A-13.2	Drive efficiency, derivation and explanation	704 to 706
A-15.0	Chapter 15	
	Information about some materials for pulley and shaft	706 to 707
	Pulley hub-shaft connection (keyed mounting), fitment tolerance table-46 & 47	707 to 709
	some information about turbo-diaphragm pulley	710
A-19.0	Horizontal curved conveyor application	710 to 711
A-19.1	Curved chute for feeding belt conveyor	711 to 714
	Conveyor load mk ² with reference to motor shaft	<mark>715</mark>

Advertisements : Forward Section

- 1) ThyssenKrupp Industries India, Pune.
- 2) Phoenix Conveyor Belt Systems GmbH, Germany.
- 3) FFE Minerals India Private Limited, Chennai.
- 4) Voith Turbo GmbH & Co. KG, Germany.

Advertisements : Rear Section

- 5) Mahindra Engineering & Chemicals Products Ltd., Pune.
- 6) Bulk-online, Germany.
- 7) Nord Drivesystems Pvt. Ltd., Pune.
- 8) Entvent Tools & Services, Chennai.
- 9) Concept Engineering Projects (P) Ltd., Pune.
- 10) Kali Material Handling Systems, Melakaveri.
- 11) Stallion Engineering Systems Pvt. Ltd., New Delhi.
- 12) Book on "Belt Feeder Design and Hopper Bin Silo", Author Ishwar G Mulani.
- 13) Man Takraf (India) Pvt. Ltd., Chennai.
- 14) Krupp Canada Inc., Canada.

Compared to book earlier print 2006, yellow shaded portion shows additional chapters and topics now included in available book print November 2012 (so it has pages - 1 to 715).